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Scaling properties of the shadowing model for sputter deposition
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We analyze a deterministic, one-dimensional solid-on-solid model for sputter deposition where the lo-
cal growth rate is a function ¥ (6) of the exposure angle 6. For long times an algebraic height distribu-
tion N(h)~h '+ develops, where the exponent p depends on the behavior of ¥ (8) close to 6= and
the extremal statistics of the substrate roughness. Analytic predictions for p, based on scaling argu-
ments, are verified by large-scale simulations using a hierarchical algorithm.
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A new growth instability associated with geometric
shadowing has recently been explored by several groups
[1-4]. The instability is expected to be relevant in pro-
cesses such as sputter deposition, where particles ap-
proach a growing surface along randomly oriented, linear
trajectories. As a result of shadowing, valleys receive less
flux than hills, and initial variations in the topography
are amplified. The numerical solution of the one-
dimensional continuum equations [2] indicates that the
fully developed surface structure consists of domed
columns separated by deep grooves. Due to computa-
tional limitations, the long-time coarsening dynamics of
the columnar structure [5] has been studied only within a
Huygens-principle approach [6], which neglects shadow-
ing.

A solid-on-solid approximation of the full shadowing
dynamics, the grass model [3], was introduced by
Karunasiri, Bruinsma, and Rudnick [1] (KBR). In this
model the surface is represented by a discrete set of
needle-shaped columns of zero width and heights h;, ar-
ranged on the sites of i =1,...,L of a one-dimensional
lattice with periodic boundary conditions. For each site,
the exposure angle 0,,0=<6; <7, describes the range of
directions in which straight lines can be drawn from the
tip of the column without intersecting any of the other
columns or the substrate (Fig. 1). The growth rate of a
column is then given by [7]
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FIG. 1. A surface configuration generated with the grass
model algorithm. The definition of the exposure angle is indi-
cated.
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where V is a monotonically increasing function of the an-
gle with ¥(0)=0. KBR used V(0)=R 0 with a rate con-
stant R, corresponding to the assumption that the full
flux arriving at the tip of a column contributes to its vert-
ical growth. Other functional forms for V' (8) apply if the
growth rate is taken to be proportional to the vertical
projection of the particle flux [2], or if the particle source
itself has a nontrivial angular distribution [8]. Starting
from a random surface configuration, the shadowing in-
stability was observed [1] to produce configurations with
a ‘“‘grassy” appearance (Fig. 1), characterized by an alge-
braic distribution of heights,

N(h)~h 0+ | ()

where N (h)dh is the expected number of columns with
heights between A and h +dh. At time ¢, the power law
(2) is cut off at the maximum height A, =V (7)t. The
typical distance between columns that have not yet been
affected by shadowing at time ¢, i.e., columns with
h;(t)=~h_,, (1), defines a coarsening length scale [4-6],
which grows as

§(r)~1? . 3)
KBR found numerically that p =1, and gave a heuristic
argument to explain this result.

The grass model provides an example of a physically
relevant, nonlocal pattern-formation process, which is in-
termediate between the complexity of diffusion-limited
growth [9,10] and the simplicity of unidirectional ballistic
deposition [11], where the shadowing effect can be exact-
ly reduced to a local interaction [12,13]. In the present
paper we map out the universality classes of the grass
model associated with the shape of the growth rate V' (0)
and the statistics of the initial conditions. Throughout
this work the initial values 4;(0) are chosen independent-
ly at each site from a distribution P,(A) of finite support,
0<h<a.

Our main results can be stated in terms of the behavior
of V(0) for small arguments, ¥V (6)~ 6", the behavior
close to 8=, V(7w)—V(0)~(7w—0)% and the behavior
of P, close to the maximum initial height a,
Py(h)~(a —h)". Here n,a>0, and v> —1 to ensure the
normalizability of P,. The coarsening exponent p de-
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pends only on a and v. For a =1 we find strong univer-
sality in the sense that p =1 independent of a and v,
while for @ > 1 p is given by

— v+1

P vt —1 - @
The small-angle exponent 1 governs the long-time behav-
ior of the typical (rather than average) column height.
Depending on the value of 7, shadowing may be either
complete (almost all columns grow only to a finite height),
or the typical height may diverge algebraically as ¢ with
u<l.

The starting point of our analysis is the dynamics of a
single column at site 0, which is about to be shadowed by
two columns at sites &/ with heights h;=h_,=h_,, > h,.
The exposure angle 6=2arctan[!/(h,, —h,)] is then
easily seen to evolve according to

[1+cot2(0/2)]l%=—2[V(77)—V(G)]. 5)
In the following we use (5) to model the shadowing dy-
namics in a situation where the coarsening length is /.

The first important observation is that (5) has two fixed
points, at 6=0 and 7, and d 6 /dt <0 elsewhere. The sha-
dowing process can therefore be viewed as a transfer of
the population of exposure angles from the unstable fixed
point at 7 to the stable fixed point at 0. Not surprisingly,
the two fixed points show up as distinct peaks in the dis-
tribution of exposure angles (Fig. 2). This implies that,
although no column is ever completely shadowed in the
sense that its growth rate would be strictly zero [14], it is
possible to distinguish active and shaded columns accord-
ing to whether the corresponding exposure angle is larger
or smaller than some threshold angle 6,,. The shape of
the distribution in Fig. 2 guarantees that the choice of
0, €(0,m) is arbitrary, since the vast majority of active
(shaded) columns will reside very close to the unstable
(stable) fixed point.

The scaling of the coarsening length £ can be inferred
from the behavior of (5) close to the unstable fixed point.
The strategy will be to estimate the time ¢*(/) required
for 6 to move a finite distance (such that 7—6~1) away
from the unstable fixed point, and then to identify 1/¢*
with the shadowing rate (the rate at which active columns
are lost). The density n =1/& of active columns decays
asdn/dt~—n/t*, so £ grows according to

dé/dt~E/t*(&) . (6)
100 . : . .
107t [ 1
P(6) 1072} F
1073} M_
107 : : : :

00 02 04 06 08 1.0
6/n
FIG. 2. Distribution of exposure angles for the grass model
with V(0)=0, at time ¢t =20. These data were obtained from
100 independent runs of a system of size L = 500.
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FIG. 3. Height distributions for the grass model with uni-
formly distributed initial conditions and growth rate
V(0)=7"—(m—0)" with =23, at times t =2.65".

Let 6(¢)=m—e(?) with initial value €(0) << 1. Expand-
ing (5) and using V(x)—V(0)~(7r—6)* we find
lde/dt ~€® For a<]1 this yields t*~/ independent of
the initial value €(0). Using (6) this implies that £ grows
linearly in time, i.e., p =1 as claimed above. In contrast,
for a>1, t* depends on the initial condition
t*~1/[(@a—1)e(0)*~!]. In order to apply this to the sha-
dowing dynamics, we need to estimate €(0) in terms of
the coarsening length &. Clearly €(0)~6h /&, where &h is
the typical height difference between two active columns.
At this point it is crucial to realize that the columns that
are active when the coarsening length is £ had the largest
initial heights in a region of size &; otherwise, they would
have been shadowed already. For the bounded initial
height distributions considered here, this implies that 84
decreases with increasing &, since the eligible initial
values are being squeezed towards the maximum initial
height a. An elementary extremal statistics argument
[13,15] shows that 8k ~ £~ 1/t 1) for initial height distri-
butions that behave as Py(h)~(a —h)” close to a. Thus
t*~gatla=1/vHD and using (6) we obtain the formula
(4) for the coarsening exponent. For a Gaussian or ex-
ponential initial distribution, 64 depends logarithmically
on £ and we obtain p =1/a, the v— oo limit of (4). We
also note that for a=2, (4) coincides with the coarsening
exponent for Huygens-principle growth [6]. Finally, in
the borderline case a=1 the dependence on the initial
conditions is only logarithmic, t*~1/In[1/€(0)], and we
find p =1 up to logarithmic corrections, in agreement
with KBR [1].

Next we turn to the discussion of our numerical re-
sults. We have developed a hierarchical algorithm that
allows us to compute the exposure angles in a time of the
order L InL. The growth rule (1) was discretized with a
time increment chosen such that the height of the tallest
column grows by 5% at each step in the simulation. The
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FIG. 4. Numerical estimates of the height-distribution ex-
ponent for the growth rate V(0)=7*—(7—0)° The line is the
prediction p =min{[1,1/(2a—1)]} .

accuracy was checked by simulations using maximum in-
crements of 2.5% and 10%. Most of the data presented
here were obtained by averaging over several runs with a
system size of L =32 768.

In Fig. 3 we show height distributions generated with
the growth rate V(6)=n"—(7r—0)% with =3 and a
uniform distribution of initial conditions (v=0) between
0 and @=0.001. The small amplitude of the initial
roughness implies, by the arguments outlined above, a
long inception time ¢ *(1)~a ~‘*~ 1 before shadowing be-
comes effective. The data for earlier times have been
omitted. Beyond a lower cutoff determined by the incep-
tion time we observe clean power-law scaling over five de-
cades in h, with an exponent 1+p =2 in agreement with
(4). Note the peaks at h =h_,, containing the population
of active columns. Figure 4 summarizes the numerical
estimates for p as a function of a. The agreement with (4)
is seen to be excellent.

The dependence of the height distribution on the initial
conditions is demonstrated in Fig. 5. We used the growth
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FIG. 5. Scaled height distributions #*>N (h) for the grass

model with V(6)=1— cosf. The dashed lines indicate the pre-
diction N(h)~h~"*? with p=23 for v=2, and p=1 for
v=—1.
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rate ¥ (0)=1— cos6, corresponding to a=n=2, and the
initial height distribution Py(h)=(1+v)(1—h)", with
v=2and —1.

In Fig. 6 we explore the significance of the small-6 be-
havior of V(0), using the family of growth rates
V(0)=(1—cos0)"? and a uniform initial distribution
(v=0). For small values of 5 (1 <1) a distinct peak ap-
pears in the height distribution in addition to the power-
law tail with exponent 1+p =42 (note that «=2 indepen-
dent of n). The peaks shifts to larger heights with in-
creasing time, indicating that the background of shaded
columns continues to grow. The peaks at different times
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FIG. 6. Height distributions for the grass model with
V(6)=(1— cosf)"?, p=0.75, and uniform initial conditions.
(a) shows the unscaled data and (b) demonstrates the approxi-
mate scaling form (7).
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can be roughly superimposed using the scaling form
N(h,t)=h~1f(h/tF), N

where the prefactor 4 ! is a consequence of the conser-
vation of the total number of columns (the vast majority
of columns belongs to the peak at late times). From plots
of the kind shown in Fig. 6(b) we estimate u=~0.825 for
7n=0.25 and pu=0.45 for p=0.75. This behavior can be
understood from an analysis of (5) for small 8. The angle
is found to approach the stable fixed point as 0~1/1,
leading to the height of the shaded column increasing as

h~1mtn (8)

for 7 <1. As before, we now replace / by the coarsening
length £€~¢? and find u=1—(1—p)n, in reasonable
agreement with the numerical estimates (here p = 1).
"However, this argument is consistent only if the fur-
ther shadowing of shaded columns (with 6; <<1) contin-
ues to be dominated by the active columns (with 6; =),
rather than by other shaded columns. Otherwise, the
relevant length scale in (8) would be smaller than §. The
dominant shadowing from columns within a distance r of
a shaded column is due to the largest column in that re-
gion, which, using the power-law distribution (2) [13,15],
has a height of the order »!’2. The corresponding sha-
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dowing angle r!7!/? decreases with r if p <1. Hence for
p <1 the dominant shadowing indeed comes from
columns at r~& with heights h; =h_,,. The argument
breaks down for p =1. Simulations using the growth rate
V(0)=6", with a=p =1, indicate that in this case the
relevant shadowing length scale / in (8) remains finite,
leading to u=1—1. Specifically, we estimate x~0.9 for
7n=0.1, u=0.6 for n=0.5, and u=0.3 for n=1, though
the data collapse is less satisfactory than that shown in
Fig. 6.

In summary, we have presented a detailed analysis of a
deterministic solid-on-solid model for sputter deposition
[1]. The subtle dependence of the scaling properties on
the statistics of the random substrate is reminiscent of
previous results for the Huygens-principle model of thin-
film evolution [6] and certain deterministic models for
unidirectional ballistic deposition [13]. However, the
present model also exhibits a regime (a =<1) where its
properties are robust with respect to the initial condi-
tions. Our approach has been to focus on the shadowing
dynamics of a single column, which was then extended in
a scale-invariant fashion. The method is similar in spirit
to Rossi’s treatment of the solid-on-solid approximation
to diffusion-limited deposition [10]; however, due to the
simpler nature of geometric shadowing, the analysis
could be carried much further in the present case.
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